Advanced MicroTurbine System

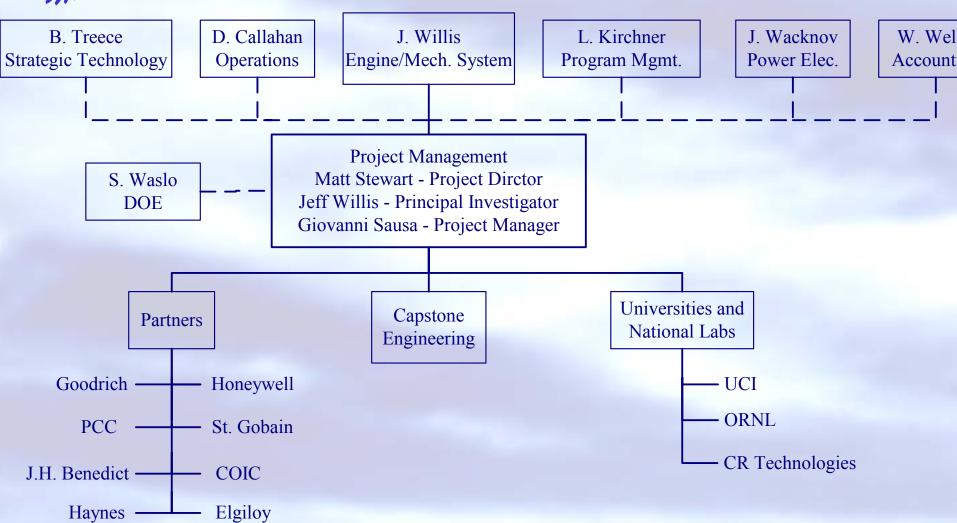
Power when and where you need it

Clean and simple

Matthew Stewar Capstone Turbine Corporation March 12, 2002

Capstone High Efficiency AMTS

- Goals per DOE solicitation
 - Efficiency: > 40%
- Multiple fuels
- Cost: < 500 \$/kW
 Emissions: < 7ppm NOx
- Life: > 11k hours to overhaul, 45k service life
- Capstone development plan
 - Complete development of Baseline Metallic Development (MD) system 1st
 - Introduce ceramics, advanced alloys, and high temperature recuperator to increase efficiency in Advanced High Efficiency (HE) microturbine system
 - HE system to meet DOE goals
 - MD system allows prudent stepped approach to validate majority of the system



Project Overview

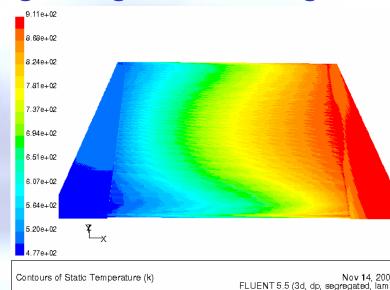
- Total project cost \$23M, DOE share \$10M
 - Substantial DOE contribution
- Requires development and partnering in areas that are not core competencies
 - Advanced materials:
 - ceramics (monolithic and composite)
 - single crystal superalloys
 - High temperature recuperator
- Considerable accomplishments to date
 - 8% of development in FY 2001
 - · Emphasis on design, analysis, and rig development
 - On schedule per detailed plan

Capstone Development Team

Capstone AMTS Accomplishments FY 2001

- Determine Advanced Microturbine system characteristics
 - Cycle studies
 - Subtask A: Market study
- Preliminary design
- Rig development
- Ceramic feasibility
- Preliminary recuperator design, producibility, and analysis

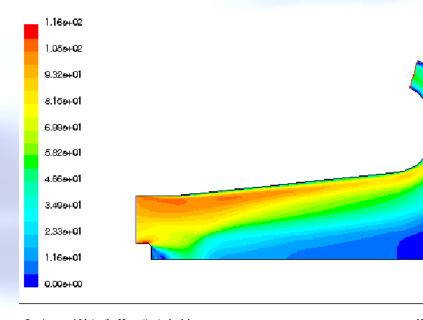
Aerodynamic Cycle Studies


- Extensive studies incorporating aerodynamic, recuperator, and cost models
- Similar model for High Efficiency (HE) and baseline Metallic Development (MD) systems
- Aerodynamic models: based on expected component efficiency, includes temperature limitations

Study included single stage radial, single stage axial, 2 stage

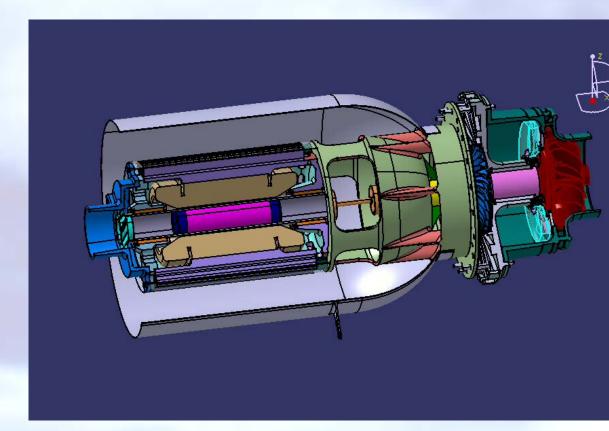
(single spool) axial turbine

 Recuperator model based on CFD analysis

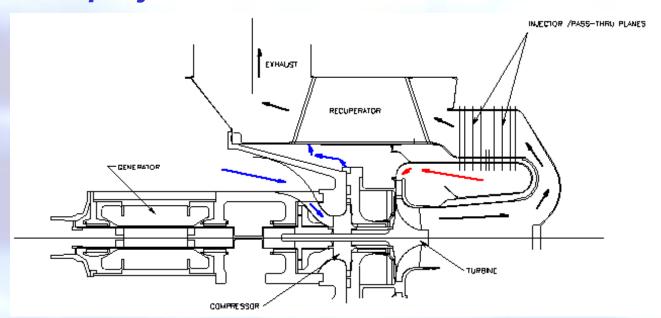

 Cost model includes discrete steps base on material limitations

Cycle Study Results

- Parametric studies: Pr, TET, recuperator, power
 - Determine: η , cost, flow, component sizes and temperatures
- Optimum pressure ratio 4-4.5 (for single stage design)
- Axial turbine: higher cost and reduced system efficiency
- 40% System efficiency is challenging!
 - Requires optimal performance from all components
 - Must minimize pressure drops and losses
- Increasing power
 - Decreased \$/kW


Marketing Study Results

- Significant market, multiple GW forecast
- Market potential based on installed costs, efficiency, O&M costs, gas price, and existing electricity price
- Minimum cost \$.07/kWh for direct heating CHP, smallest market
- Largest market for peak shaving, \$.14/kWh
- Minimal loss of market opportunities as power rating increased


Capstone Baseline Turbine

- Single stage centrifugal compressor
- Single stage radial inflow turbine
- Powerhead and generator utilize same shaft
- Air bearings

- Annular recuperator
- Annular low emission combustor
- IGBT based power electronics
- Full system approach
- Leverage experience from previous microturbine development projects

Characteristics

		Baseline	HE w/	HE w/ metallic
		MD	ceramic rotor	dual-alloy
	Power, kW	200	290	270
	Net Efficiency	35.0%	40.8%	40.3%
	Cost relative to HE, \$/kW	75%	100%	100%
	TET, °F	1185	1600	1510
	Combustor	Metal	Ceramic	Ceramic
	Recuperator	SS-347	H214-230	H214-230
	Overhaul life, hours	45,000	11,000	11,000

Recuperator development

- Similar to the configuration used on Capstone 30 kW and 60 kW
 - Successfully being manufactured by Capstone
 - No known failures after >1 million field operating hours
- Meets effectiveness and pressure drop requirements
- Improve manufacturability, decrease part count, improve welding
- Significant CFD analysis to optimize parameters
- Rig test to verify the design/analysis
- HE recuperator will require use of high temperature material
 - Materials identified for evaluation include HR-120, 230 and 214

Advanced Material Insertion (HE System)

- Modifications limited to engine hot section
- Turbine rotor: radial in flow, advanced material
 - monolithic ceramics
 - dual-alloy metallic
- Combustor design & temperature favor CFCC
- Turbine nozzle: ceramics or cooled metallic
- Focused effort in FY 2002
 - Radial turbine rotor fabrication feasibility
 - CFCC combustor material selection & evaluation
 - Remaining static design considered lower risk

- Monolithic supplier uncertainty effected development
- Monolithic development
 - Continued dialog w/ potential partners
 - Component requirements and schedule identified
 - Radial turbine rotor thick hub and diameter are technical challenges
- Combustor CFCC's
 - Candidates materials identified
 - Select material and start sub-element ring testing in ORNL C60

Program Risks

- Recuperator
 - Performance: CFD analysis, rig tests, early engine tests
 - Life: weld evaluation, cyclic testing
 - High temperature materials: coordinated effort w/ manufacturers and ORNL
- Turbine
 - Evaluate the use of advanced cast materials
 - Continue to pursue monolithic ceramics
- Combustor:
 - Performance: advanced CFD and testing (rig/engine)
 - Advanced materials for HE system
- Aerodynamic cycle
 - Component testing (rig/engine)
- Overall (consistent w/ turbomachinery development)
 - · Analysis, rig testing, early engine evaluation

Near Term Goals

- FY 2002
 - Complete Baseline MD system design
 - Complete initial recuperator core (SS347)
 - Initiate MD engine testing
- FY 2003 and Beyond
 - Complete Baseline MD system testing
 - Complete HE design
 - Complete first HE recuperator core
 - Initiate test of advanced material "hot section" components
 - Complete HE system testing
 - Complete field test HE system (Task 5)

Capstone AMTS Summary

- Good progress to date
- Preliminary design of HE meets all defined goals
- Prudent stepped approach, near-term focus on MD system
- Introduce advanced materials
- Continue to advocate the use of Microturbine DER applications

